Ela Extreme Ranks of (skew-)hermitian Solutions to a Quaternion Matrix Equation∗

نویسندگان

  • QING WEN WANG
  • JING JIANG
  • Michael Neumann
چکیده

The extreme ranks, i.e., the maximal and minimal ranks, are established for the general Hermitian solution as well as the general skew-Hermitian solution to the classical matrix equation AXA +BY B = C over the quaternion algebra. Also given in this paper are the formulas of extreme ranks of real matrices Xi, Yi, i = 1, · · · , 4, in a pair (skew-)Hermitian solution X = X1 + X2i + X3j + X4k, Y = Y1 + Y2i + Y3j + Y4k. Moreover, the necessary and sufficient conditions for the existence of a real (skew-)symmetric solution, a complex (skew-)Hermitian solution, and a pure imaginary (skew-)Hermitian solution to the matrix equation mentioned above are presented in this paper. Also established are expressions of such solutions to the equation when corresponding solvability conditions are satisfied. The findings of this paper widely extend the known results in the literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extreme ranks of (skew-)Hermitian solutions to a quaternion matrix equation

The extreme ranks, i.e., the maximal and minimal ranks, are established for the general Hermitian solution as well as the general skew-Hermitian solution to the classical matrix equation AXA +BY B = C over the quaternion algebra. Also given in this paper are the formulas of extreme ranks of real matrices Xi, Yi, i = 1, · · · , 4, in a pair (skew-)Hermitian solution X = X1 + X2i + X3j + X4k, Y =...

متن کامل

Ela on Solutions to the Quaternion Matrix Equation

Expressions, as well as necessary and sufficient conditions are given for the existence of the real and pure imaginary solutions to the consistent quaternion matrix equation AXB+CY D = E. Formulas are established for the extreme ranks of real matrices Xi, Yi, i = 1, · · · , 4, in a solution pair X = X1 +X2i+X3j+X4k and Y = Y1+Y2i+Y3j+Y4k to this equation. Moreover, necessary and sufficient cond...

متن کامل

Ela Two Special Kinds of Least Squares Solutions for the Quaternion Matrix Equation

By using the complex representation of quaternion matrices, the Moore–Penrose generalized inverse and the Kronecker product of matrices, the expressions of the least squares η-Hermitian solution with the least norm and the expressions of the least squares η-anti-Hermitian solution with the least norm are derived for the matrix equation AXB+CXD = E over quaternions.

متن کامل

Ranks of the common solution to some quaternion matrix equations with applications

We derive the formulas of the maximal andminimal ranks of four real matrices $X_{1},X_{2},X_{3}$ and $X_{4}$in common solution $X=X_{1}+X_{2}i+X_{3}j+X_{4}k$ to quaternionmatrix equations $A_{1}X=C_{1},XB_{2}=C_{2},A_{3}XB_{3}=C_{3}$. Asapplications, we establish necessary and sufficient conditions forthe existence of the common real and complex solutions to the matrixequations. We give the exp...

متن کامل

Convergence Properties of Hermitian and Skew Hermitian Splitting Methods

In this paper we consider the solutions of linear systems of saddle point problems‎. ‎By using the spectrum of a quadratic matrix polynomial‎, ‎we study the eigenvalues of the iterative matrix of the Hermitian and skew Hermitian splitting method‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010